Palladium complex catalyzed $\mathrm{Si}-\mathrm{Si}$ bond metathesis dimerization of 3,4-benzo-1,2-dimethyl-1,2-diethyl-1,2-disilacyclobut-3-ene and isomerization of the resulting and relevant dimers ${ }^{1}$

Yuko Uchimaru ${ }^{\text {a }}$, Masato Tanaka ${ }^{\text {a,b, * }}$
${ }^{3}$ Nationai Institute of Materials and Chemical Rescarch, Tsukuba, Iharaki 305. Japan
${ }^{6}$ Department of Chemistry, University of Tsukuba, Tsukuha, Ibaraki 305, Japan

Received 10 January 1996

Abstract

Palladium-phosphine complex catalyzed Si -Si bond metathesis dimerization of 3,4-benzo-1,2-dimethyl-1,2-diethyl-1,2-disilacyclo-but-3-ene (1b) took place at $80^{\circ} \mathrm{C}$ to give 3,4,7,8-dibenzo-1,2,5,6-tetramethyl-1,2,5,6-tetraethyl-1,2,5,6-tetrasilacycloocta-3,7-diene (2b) and its isomer 4,5,7,8-dibenzo-1,2,3,6-tetramethyl-1,2,3,6-tetraethyl-1,2,3,6-tetrasilacycloocta-4,7-diene (3b). Higher temperatures or longer reaction times enhanced the selectivity for $\mathbf{3 b}$ relative to $\mathbf{2 b}$, indicative of concomitant isomerization of initially formed $\mathbf{2 b}$ to $\mathbf{3 b}$. Isomerization of $3,4,7,8$-dibenzo-1,1,2,2,5,5,6,6-octamethyl-1,2,5,6-tetrasilacycloocta-3,7-diene (2a), analogous to $\mathbf{2 b}$, also proceeded at $80^{\circ} \mathrm{C}$ in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. Besides $4,5,7,8$-dibenzo-1,1,2,2,3,3,6,6-octamethyl-1,2,3,6-tetrasilacycloocta-4,7-diene (3a), 4,5-benzo-1,1,2,3,3-pentamethyl-2-(o-trimethylsilylphenyl)-1,2,3-trisilacyclopentene (4a), 3,4,6,7-dibenzo-1,1,2,2,5,5-hexamethyl-1,2,5-trisilacycloheptadiene (5a) and 4,5-benzo-1,1,2,2,3,3-hexamethyl-1,2,3-trisilacyclopentene (6a) were also formed. Merhanisms of the dimerization of $\mathbf{1 b}$ and isomerization of 2 a and 2 bl are discussed.

Keywords: Silicon; Palladium; Disilane: Metahesis; Rearrangement; Catalysis

1. Introduction

Because of the unique chemical and physicochemical properties of organosilicon compounds and silicon-based polymers, much importance is attached to the development of new synthetic methodologies in silicon chemistry [1]. As Shiina [2] suggested, 3,4-benzo-1,1,2,2-te-tramethyl-1,2-disilacyclobut-3-ene (1a) is a useful monomer. Upon treatment with low valent late transition metal complexes, it can be assumed to form fivemembered bis(silyl)metal species by oxidative addition of the $\mathrm{Si}-\mathrm{Si}$ bond. As Eaborn and coworkers reported and we confirmed [3], the same species are generated from o-his(dimethylsilyl)benzene. Accordingly, we examined the metal complex catalyzed polymerization of o-bis(dimethylsilyl)benzene rather than that of 1a, which appeared too unstable. However, the attempted polymerization of o-bis(dimethylsilyl)benzene was unsuccess-

[^0]ful, although reactions with various unsaturated compounds proceeded cleanly [4]. In contrast, our continued efforts to achieve metal complex catalyzed ring-opening polymerization have revealed dimerization and polymerization of 1,2-disilacyclopentane, silacyclobutanes and silicon- or germanium-bridged [1]ferrocenophanes [5]. During the course of the study, we encountered 3.4-benzo-1,2-dimethyl-1,2-diethyl-1,2-disilacyclobut-3-ene (1b), which is much more stable than la and dimerizes to give an isomeric mixture comprising 3,4,7,8-dibenzo-1,2,5,6-tetramethyl-1,2,5,6-tetraethyl-1,2,5,6-tetrasila-cycloocta-3,7-diene (2b) and 4,5,7,8-dibenzo-1,2,3,6-tetramethyl-1, ,2,3,6-tetraethyl-1,-2,3,6-tetrasilacyclo-octa-4,7-diene (3b) (Scheme 1) [6]. Very recently, Ando's and Ishikawa's groups have also independently observed selective palladium catalyzed dimerizations of 1 la to $3,4,7,8$-dibenzo-1,1,2,2,5,5,6,6-octamethyl-1,2,5,6-tetrasilacycloocta-3,7-diene (2a) [7a] and of 3,4-benzo-1,1,2,2-tetraethyl-1,2-disilacyclobut-3-4-ene (1c) to $4,5,7,8$-dibenzo-1,1,2,2,3,3,6,6-octa-ethyl-1,2,3,6-tetrasilacycluocta-4,7-diene (3c) [7b]. Our observation of the formation of an isomeric mixture

appeared to give much more information about the mechanism of the metathesis dimerization of benzodisilacyclobutenes. We report herein the detailed results of the study of the palladium catalyzed reaction of $\mathbf{1 b}$ and the related isomerization of $\mathbf{2 a}$.

2. Results

2.1. Transition metal catalyzed reactions of 1 b

A toluene solution of a $1: 1$ diastereorneric mixture of $\mathbf{1 b}$ (0.04 mmol) was heated in the presence of a catalytic amount of various transition metal complexes ($10 \mathrm{~mol} \%$) at $80^{\circ} \mathrm{C}$ for 14 h in a sealed tube. The results are summarized in Table 1.

Analysis of the reaction mixture by GLC and GLCMS revealed the formation of $\mathbf{2 b}, \mathbf{3 b}$ and other species [8]. Palladium-triphenylphosphine complexes are known to be effective in the $\mathrm{Si}=\mathrm{Si}$ bond metathesis reaction [7a,9]. Use of $\mathrm{Pd}(\mathrm{dba})_{2}-2 \mathrm{PPh}_{3}$ did indeed give the
simple metathesis dimer $\mathbf{2 b}$, but the yield was only 15%. The main product was its isomer 3 b (48% yield, ;un 1). These products were not formed in the absence of a transition metal catalyst. When triethylphosphine, a stronger electron-donating ligand, was used instead of PPh_{3}, the simple dimerization mainly predominated to afford 2 b in 44% yield (run 2). In contrast, the use of phosphites such as triphenylphosphite and trimethylphosphite again resulted in preferential formation of 3b (runs 3 and 4). In both reactions with the phosphite ligands, however, low yields of various byproducts (vide infra), including those presumably arising from redistribution reactions of $\mathbf{1 b}, \mathbf{2 b}$ and $\mathbf{3 b}$, were also detected by GLC and GLC-MS analyses, in addition to polymeric products. Reaction in the presence of $\mathrm{P}(\mathrm{OMe})_{3}$ in particular gave a very complex mixture. The weakly chelating 1,4-bis(diphenylphosphino)butane was less effective for the reaction (run 5) than monodentate ligands, and its use gave mainly $\mathbf{3 b}$. Formation of polymers was also significant (approximately 10%; $M_{\mathrm{w}}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=6.5 \times 10^{5}(7.7)$ relative to polystyrene standards). However, the reaction was faster when the phosphine-free palladium(0) catalyst $\operatorname{Pd}(\mathrm{dba})_{2}$ was used (run 6). Besides $\mathbf{2 b}$ ($\mathbf{3 0 \%}$) and $\mathbf{3 b}$ (20%), an unidentified dimer (presumably 4 b , around 10%; MS $m / z 440$ $\left(\mathrm{M}^{+}\right)$) and a fairly large quantity of polymers (approximately $15 \% ; M_{\mathrm{w}}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=3.4 \times 10^{5}$ (6.4)) were also formed. When $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ was employed, $\mathbf{2 b}$ was formed in 13% yield along with polymers (about $10 \% ; M_{\mathrm{w}}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=1.4 \times 10^{5}(4.4)$), but other

Table 1
Effect of catalysts on the dimerization reaction of $1 b^{a}$

Run	Catalyst	Recovery ${ }^{\text {² }}$ (\%)	Yield ' (\%)	
		1 b	2 b	3b
1	$\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{PP} \mathrm{S}_{3}{ }^{\text {d }}$	27	15(21)	$48(66)$
2	$\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{PEt}_{3}$	12	44(50)	$7(8)$
3	$\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{P}(\mathrm{OPh})_{3}$	22	5(6)	32(45)
4	$\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{P}(\mathrm{OMe})_{3}$	26	3(4)	$719)$
5	$\mathrm{Pd}(\mathrm{dba})_{2}+\mathrm{ldppb}^{\text {e }}$	73	1(4)	13(48)
6	$\mathrm{Pd}(\mathrm{dba})_{3}$	0	30(30)	20.20)
9	$\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{1}\right)_{3}$	69	13(42)	0
8	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$	4	4(4)	0

 based on the amount of thecharged. The figures in parentheses are GLC yields based on the amount of $1 b$ consumed. "dba dibenzylideneacetone. ${ }^{e}$ dppe $=1.4$-bis(diphenylphosphino)butane.

Table 2
Dimerization reaction of $\mathbf{1 b}$ in the presence of $\left.\mathrm{Pd}_{(\mathrm{PP}}^{1}\right)_{4}$ a

Run	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Recovery ${ }^{\text {b }}$ (\%)	Yield ${ }^{\text {c }}$ (\%)	
			16	2 b	3b
1	80	14	70	12(40)	12(40)
2	80	40	58	4(10)	$31(74)$
3	120	14	24	0	51(67)

dimers were not detected (run 7). Phosphine free ruthenium complexes such as $\mathrm{Ru}(\mathrm{cod})(\mathrm{cot})$ or $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ did not catalyze the dimerization. The reaction with $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ gave a small amount of $\mathbf{2 b}$, but a considerable amount of oligomeric material ($M_{\mathrm{w}}\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)=$ $1.2 \times 10^{3}(1.2)$) was also formed (run 8) [10].

Experiments aimed at establishing the mode of production of $\mathbf{3 b}$ indicated clearly that isomerization of $\mathbf{2 b}$ to 3b (and perhaps other reactions also [8,11]) takes place during the metathesis reaction (Table 2). First we examined the time dependence of the course of the $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyzed reaction of $\mathbf{1 b}$. When the reaction time was prolonged from 14 to 40 h at $80^{\circ} \mathrm{C}$, the yield of $\mathbf{3 b}$ increased at the expense of $\mathbf{2 b}$ (runs 1 and 2). Reaction at $120^{\circ} \mathrm{C}$ gave 3 b in a fairly high yield without formation of $2 \mathbf{2 b}$ (run 3). As Ishikawa and coworkers [7b] reported, the dimerization of 1c at $150^{\circ} \mathrm{C}$ gives exclusively 3c. From our present results, it appears reasonable to consider that the exclusive formation is due at least in part to occurrence of a similar isomerization of the possible intermediate 2 c .

2.2. $\operatorname{Pd}\left(P P h_{3}\right)_{4}$ catalyzed reaction of $2 a$

To confirm the isomerization of the kinetically preferred $\mathbf{2 b}$ to the thermodynamically more stable $\mathbf{3 b}$ and to gain more mechanistic information, including the structural characterization of byproducts, it seemed necessary to simplify the reaction system. Accordingly, we decided to use 2 a in place of $\mathbf{2 b}$ as the starting material for the possible isomerization in the presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, When a mixture of $\mathbf{2 a}(0.034 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0034 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.2 \mathrm{ml})$ was heated at $80^{\circ} \mathrm{C}$ for 12 h in an NMR tube, 2 a remained intact. However, heating at $120^{\circ} \mathrm{C}$ for 6 h led to nearly complete consumption of $2 a$ (2% recovery) and formation of several products was observed by NMR spectroscopy (Scheme 2). One of the major products was 4,5,7,8-di-benzo-1,1,2,2,3,3,6,6-octamethyl-1,2,3,6-tetrasilacyclo-octa-4,7-diene (3a, 35\% yield) of the same cyclic framework as 3b. The occurrence of the isomerization of 2 a to 3 a strongly supports the view that in the dimerization of $\mathbf{1 b}, \mathbf{3 b}$ was formed via isomerization of the initially formed dimer 2b. Besides 3a, 4a (16%), 5a (23%), 6a (16%) and 7a (9%) were also detected [11]. The formation of 7a clearly suggests the generation of species having five-membered 1-palladia-2,5-disilacyclopentene or related structures. However, 7a was found not to have been present in the reaction mixture before opening of the sealed NMR tube, indicating that 7a arises from reaction with traces of oxygen or moisture during the work-up.

The time course of the reaction was quite informative about possible pathways leading to $4 \mathrm{a}, 5 \mathrm{a}$ and 6 a ; in the reaction at $120^{\circ} \mathrm{C}$, the yields of $3 \mathrm{a}, 4 \mathrm{a}, 5 \mathrm{a}$ and 6 a were respectively $25,11,13$ and 9% after 3 h . Comparison of

3a 25% (3h)
$35 \%(6 h)$

$+\quad 2 a$
Recovery 35\% (3 h)
$2 \%(6 \mathrm{~h})$

Scheme 2.
the yields of the various products after 6 h (vide supra) indicates that, as for 4 a , the ratio $4 \mathrm{a} / 3 \mathrm{a}$ remains nearly constant throughout the reaction; 0.44 at 3 h and 0.46 at 6 h . However, the ratios 5a/3a and 6a/3a increased as the isomerization of 2 a proceeded. These observations suggest that 4 a is also a primary product coming from elemental processes involved in the isomerization of 2 a , and that 5a and 6a are secondary products formed through further reactions of initially formed 3a and/or 4 A.

3. Discussion

Possible mechanisms for the formation of $\mathbf{2 b}$ from 1b are illustrated in Scheme 3, involving oxidative addition of the $\mathrm{Si}-\mathrm{Si}$ bond of $\mathbf{1 b}$. further reaction of the resulting complex 8 b with lb leading to $\mathrm{\| l} \mathrm{~b}$ via either 9 b or 10 b , and finally reductive elimination. Such elemental processes are well precedented. The oxidative addition of disilanes to palladium complexes [12] has been well documented. The transformation of 1 b to 1 lb can be understood in terms of lto and coworkers' [13] observation that a bis(disilanyl)methane derivative undergoes intramolecular bond transmutation with an isocyanide palladium complex to give a disilane and a 1 -palladia-2,4-disilacyclobutane complex. The final reductive elimination of bis(silyl)palladium species has not been systematically studied, but can be assumed in the light of similar transformations of the corresponding platinum complexes [14]. The only rather uncertain event involved in Scheme 3 is the transient intermediacy of either 9 b or 10 b (or others) generated during the transformation of $\mathbf{8 b}$ to $\mathbf{1 1 b}$. One of us recently isolated tetrakis(silyl)platinum(IV) and tetrakis(silyl)palladium(IV) complexes starting from an o-bis(silyl)ben-

10b

2b

Scheme 3.
zene compound [15]. These findings clearly support the mechanism involving the rather rare $\mathrm{Pd}(\mathrm{IV})$ species 9 b . At present, however, we do not have evidence to argue against the σ-bond metathesis via a four-membered transition state like 10b.

As described in the Results section, not only $\mathbf{2 b}$ but also $\mathbf{3 b}$ was formed in the dimerization of $\mathbf{1 b}$. This was ascribed to simultaneous isomerization of the initially formed 2b to 3b. A separate experiment using 2a confirmed that such isomerization does indeed take place, but other products were also formed along with 3a. On the basis of these observations, one can envisage the mechanism of isomerization of 2 to 3 (and also of 2a to 4a) as illustrated in Scheme 4. The formation of 7a appears to substantiate the intermediacy of 1-pal-ladia-2,5-disilasyclopentadiene species such as 9 (9') during the isomerization of 2 a . Oxidative addition of the $\mathrm{Si}-\mathrm{Si}$ bond in 2 leads, via 11 , to 9 (9^{\prime}), which can display two modes of reaction. One involves reaction as an o-quinodisilane complex 9^{\prime} [16] to undergo intramolecular 1,2-addition of one of the $\mathrm{Si}-\mathrm{Pd}$ bonds to afford either 12 or 15 . Aromatization of 12 may generate a silylene species 13. 1,2-Migration of a Pd-bound silyl to the silylene ligand [17] yielding 14, followed by reductive elimination, gives 3 . Alternatively, the formed 15 undergoes reductive elimination to generate 16, which may isomerize to 3 . The other reaction that 9 can undergo is 1,3 -migration of an alkyl group yielding 17 . which is likely to be transformed, via 1,2-migration [17] and subsequent reductive elimination, to 4. 1,3-Migration is often postulated for metal catalyzed redistribution reactions [18]. However, migration of ethyl and higher alkyl groups is very rare, and is considered to be slower than methyl (and phenyl) migration. Accord-

(i) Unlikely pathway for $5 a$

(ii) More likely pathway for $\mathbf{5 a}$ and $\mathbf{6 a}$

Scheme 5.
ingly, the isomerization of $\mathbf{2 b}$ and $\mathbf{2 c}$ that takes place concomitantly as the dimerization of 1b and 1c proceeds would not be expected to afford da-type products in considerable yields, in agreement with observation.

Formation of 5 a and ga merits mechanistic consideration, although we do not have unequivocal information. From the time course of isomerization of 2a, these compounds were concluded to be formed via secondary reactions of 3a. Accordingly, the possibility that 5a is directly formed from $2 a$ via 11 a and 19 a is ruled out (Scheme $5(\mathrm{i})$). Most probable is the sequence of events depicted in Scheme 5(ii), involving oxidative addition of $3 \mathrm{a}, 1,2$-shift of the β-silyl group [17,19] in 14a and reductive elimination of 5 a from resulting 13a. The sequence is in full agreement with our previous observations; the stoichiometric reaction of 1,3 -dichlorohexamethyltrisilane with $\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{3}$ at $60^{\circ} \mathrm{C}$ yielded, besides (disilanyl)(silyl)platinum species, a bis(chlorodimethylsilyl)platinum complex, the oxidative addition product from the resulting 1,2 -dichlorodisilane [17]. Furthermore, the results of a palladium catalyzed reaction of the trisilane with phenylacetylene [17] also strongly indicated a sequence such as $\mathbf{3 a} \rightarrow \mathbf{1 4 a} \rightarrow \mathbf{1 3 a} \rightarrow 5 \mathrm{a}+$ silylene species. Thus the reaction gave the by-products 1,2-bis(chlorodimethylsilyl)ethene and a silacyclopentadiene in considerable yields. The former came from acetylene insertion into the in situ generated dichloro-
disilane, and the latter by trapping of the extruded silylene species with acetylene molecules.

The formation of $6 \mathbf{a}$ can also be reasonably explained, given that 13a is generated from 3a. Thus, the reductive elimination yielding 5 a , if it occurs, must extrude palladium silylene species from 13a. In the reaction mixture in which isomerization of 2a proceeds, there are various complexes (Scheme 4), including those containing coordinated o-phenylenedisila moieties such as 9 a (9 'a). The highly reactive 1 a itself can also be expected to be generated in situ in low concentration from these complexes. The palladium silylene species extruded from 13a may either end up in polymer formation or be trapped by these o-phenylenedisila species or 1a to afford 6a, as suggested in our earlier paper [17].

4. Experimental section

4.1. General

All manipulations were carried out under nitrogen. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{29} \mathrm{Si}$ NMR spectra were recorded in CDCl_{3}, unless otherwise noted, with tetramethylsilane or chloroform as standard on a Bruker ARX-300 (300 MHz for ${ }^{1} \mathrm{H}, 75.5 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and 59.6 MHz for ${ }^{29} \mathrm{Si}$) instrument. Infrared spectra were recorded with neat samples on a JASCO FT/IR-5000 spectrometer. Mass spectra (EI, 70 eV) were recorded on Shimadzu QP-1000, Shimadzu QP-5000 and JEOL JMS-DX 303 GC-MS spectrometers. All boiling points are uncorrected. Solvents were dried over sodium wire and distilled under nitrogen. Other liquids were also distilled before use. $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ was used as purchased. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}[20]$. $\mathrm{Pd}(\mathrm{dba})_{2}[21], \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ [22] and 2a [7a] were prepared by the pablished methods.

4.2. Preparation of $1 b$

Compound 1b was synthesized by the following three steps.
o-Bis(methylethylsilyl)benzene ($1: 1$ diastercomeric mixture) was obtained (57% yield) from the reaction of o-dibromobenzene, chloromethylethylsilane and magnesium in diethyl ether as described for a similar compound [23]. B.p. $110^{\circ} \mathrm{C} / 5 \mathrm{mmHg}$. IR: 2144, 1251, 1123 cm^{-1}. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.365(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiMe})$, 0.370 (d, $J=3.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiMe}$), $0.85-0.95(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Si}-\mathrm{CH}_{2}$), $1.0-1.1\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 4.55-4.65(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{SiH}), 7.35-7.4(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.55-7.60(\mathrm{~m}$. 2 H , aromatic) ppm. ${ }^{13} \mathrm{C}$ NMR: $\delta-4.9$ (SiMe), -4.8 (SiMe), $6.05\left(\mathrm{Si}-\mathrm{CH}_{2}\right), 6.1\left(\mathrm{Si}-\mathrm{CH}_{2}\right), 8.3\left(2 \mathrm{C}, \mathrm{CH}_{2}-\right.$ CH_{3}), 128.3 (2C), 134.7 (2C), 143.7 (2C) ppm. ${ }^{29} \mathrm{Si}$ NMR: $\delta-13.90,-13.84 \mathrm{ppm}$. MS m / z (relative intensity): $222\left(M^{+}, 1\right), 221\left(M^{+}-1,3\right), 207\left(M^{+}-\right.$ Me, 5), 193 ($M^{+}-\mathrm{Et}, 100$), 165 (39), 163 (29), 149
(12), 121 (15), 105 (11). Anal. Found: C, 64.76; H, 9.69. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{Si}_{2}$ Calc.: C. 64.78; H, 9.96\%.

Chlorination of o-bis(methylethylsilyl)benzene with the $\mathrm{PdCl}_{2}-\mathrm{CCl}_{4}$ system [24] gave o-bis(chloromethylethylsilyl)benzene ($1: 1$ diastereomeric mixture, 76% yield). B.p. $142^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$. IR: $1253,1116 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR: $\delta 0.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe})$, 1.03-1.12 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}$), 1.14-1.25 (m, 4 H , $\mathrm{Si}-\mathrm{CH}_{2}$), 7.43-7.48 (m, 2H, aromatic), 7.85-7.91 (m, 2 H , aromatic) ppm. ${ }^{13} \mathrm{C}$ NMR: $\delta 2.91$ (SiMe), 3.06 (SiMe), $6.94\left(\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 6.97\left(\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 11.84$ $\left(\mathrm{Si}-\mathrm{CH}_{2}\right), 11.93\left(\mathrm{Si}-\mathrm{CH}_{2}\right), 129.1$ (2C), 135.87, 135.91, $140.97,141.00 \mathrm{ppm} .{ }^{29}$ Si NMR: $\delta 24.07,24.12 \mathrm{ppm}$. MS m / z (relative intensity): $279\left(M^{+}-\mathrm{Me}\right.$ for $2 \times{ }^{37} \mathrm{Cl}$, 1), 277 ($M^{+}-\mathrm{Me}$ for ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}, 4$), 279 ($M^{+}-\mathrm{Me}$ for $2 \times{ }^{35} \mathrm{Cl}, 6$), 265 (17), 263 (70), 261 (100), 235 (16), 233 (24), 221 (3), 219 (6), 217 (6), 197 (18). Anal. Found: C, 49.56; $\mathrm{H}, 7.01 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{Si}_{2} \mathrm{Cl}_{2}$ Calc.: C, 49.47; H, 6.92\%.
3.4-Benzo-1,2-dimethyl-1,2-ethyl-1,2-disilacyclobut-3-ene 1b ($1: 1$ diastereomeric mixture) was prepared by the reductive coupling of o-bis(chloromethylethylsilyl)benzene with sodium in toluene as described for a similar compound [2]. After filtration of solid materials from the reaction mixture, the resulting colorless solution of $\mathbf{1 b}$ was used for the catalytic reactions without further purification. The 'H NMR spectrum showed the purity to be higher than 85%. A major contaminant was 4.5-benzo-1,3-dimethyl-1.3-diethyl-1,3-disila-3oxacyclopentene (7b) which displayed two singlets assignable to CH_{3} at $\delta 0.42$ and 0.46 ppm in CDCl_{3} : its concentration ranging from 5 to 10%. A trace of a polymer was also observed by GPC.

Compound 1b. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}, \mathrm{D}_{8}$): $\delta 0.37$ (s. 3 H , $\mathrm{SiMe}), 0.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.7=1.1$ ($\mathrm{m}, 10 \mathrm{H} . \mathrm{Si}-\mathrm{CH}_{2}=$ CH_{3}), $7.17=7.24(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.37-7.42(\mathrm{~m}, 2 \mathrm{H}$, aromatic) ppm . ${ }^{19} \mathrm{C}$ NMR ($\mathrm{C}, \mathrm{D}_{8}$): $\delta-0.95$ (SiMe), $-0.91(\mathrm{SiMe}), 6.88\left(\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 6.94\left(\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$. $7.86\left(\mathrm{Si}-\mathrm{CH}_{2}\right), 7.90\left(\mathrm{Si}-\mathrm{CH}_{2}\right), 129.6$ (2C), 132.2. 132.3. $155.94,156.00 \mathrm{ppm}$, ${ }^{29}$ Si NMR (C, D_{8}): $\delta 3.41$, 3.46 ppm . MS m / z (relative intensity): $220\left(\mathrm{Mi}^{+}, 22\right)$, $205\left(M^{+}-\mathrm{Me}, 8\right), 191\left(M^{+}-\mathrm{Et}, 96\right), 177(\mathrm{i}), 163$ (100), 145 (29). HRMS Found: $220.1105 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{Si}_{2}$ Calc.: 220.1102.

4.3. General procedure for catalytic reactions of 1b

A mixture of a transition metal complex (a palladium compound in most cases) (0.004 mmol), Ib (0.04 mmol) and toluene (0.2 ml) was heated at $80^{\circ} \mathrm{C}$ for 14 h in a sealed glass tube. The mixture was analyzed by GLC, GLC-MS and GPC.

4.4. Compound $2 b$

From the experiment represented by run 2 in Table 1 , a mixture of compounds $\mathbf{2 b}$ and $\mathbf{3 b}(25: 4)$ was isolated
by preparative TLC (silica gel, hexane) in 38% total yield. IR: $1250,1114 \mathrm{~cm}^{-1}$. H NMR: $\delta \mathbf{\delta} \mathbf{0 . 3 5 - 0 . 5 2 (\mathrm { m } ,}$ 12H, SiMe), 0.85-1.05 (m, 20H, SiEt), 7.17-7.22 (m, 4 H , aromatic), $7.45-7.55\left(\mathrm{~m}, 4 \mathrm{H}\right.$, aromatic) $\mathrm{ppm} .{ }^{29} \mathrm{Si}$ NMR: $\delta-16.6-15.7(\mathrm{~m}) \mathrm{ppm}$. MS m / z (relative intensity): 440 ($M^{+}, 0.4$), 425 (0.1), 411 (0.2), 325 (0.6), 309 (1), 295 (2), 281 (5), 267 (5), 163 (8), 144 (100), 116 (25), 73 (8), 59 (23). HRMS Found: 440.2178. $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Si}_{4}$ Calc.: 440.2205 .

4.5. Compound 3b

From the experiment represented by run 3 in Table 2, preparative TLC (silica gel, hexane) gave 3b in 60% yield. IR: $1249,1112 \mathrm{~cm}^{-1}$. $^{1} \mathrm{H}$ NMR: $\delta-0.2--0.1$ (m, 3H, SiMe), $-0.05-0.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{SiMe}), 0.11-0.20$ (m, 3H, SiMe), 0.45-0.50 (m, 3H, SiMe), 0.60-0.90 (m, 20H, SiEt), 7.25-7.35 (m, 4H, aromatic), 7.45-7.55 (m, 2 H , aromatic), $7.65-7.80(\mathrm{~m}, 2 \mathrm{H}$, aromatic) ppm . ${ }^{13} \mathrm{C}$ NMR: $\delta-4.5--4.0(\mathrm{~m}), 7.0-10.0(\mathrm{~m}), 127.1$, 127.3, 127.7, 127.8, 133.4, 134.7, 135.7, 136.7, 145.5145.6 (m) ppm. ${ }^{29}$ Si NMR: $\delta-40.6--40.2(\mathrm{~m})$, -15.4--15.0 (m), -4.8--4.2 (m) ppm. MS m/z (relative intensity): $440\left(M^{+}, 1\right), 355$ (1), 325 (1), 295 (3), 281 (11), 267 (8), 253 (4), 163 (4), 144 (100), 116 (29), 59 (14). HRMS Found: 440.2205. $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{Si}_{4}$ Calc.: 440.2205.

4.6. Reaction of $2 a$ with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$

A mixture of $2 \mathrm{a}(0.034 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium (0.0034 mmol) and benzene- d_{6} $(0.2 \mathrm{ml})$ was heated under nitrogen in a sealed NMR tube. The reaction was monitored by ${ }^{1} \mathrm{H}$. ${ }^{11} \mathrm{C}$ and ${ }^{39} \mathrm{Si}$ NMR spectroscopy. After heating at $120^{\circ} \mathrm{C}$ for 6 h , the NMR spectrum showed almost complete consumption of 2 a ($\delta_{\mathrm{c}} 0.93 \mathrm{ppm}$ for methyl carbons and $\delta_{\mathrm{S} 1}-19.6$ $\mathrm{ppm})$. In a separate reaction on a five-fold scale $\left(120^{\circ} \mathrm{C}\right.$ for 8 h), 3a (26% yield), $6 \mathrm{a}(20 \%)$ and a mixture of 4 a (11%) and $5 \mathrm{a}(21 \%$) were separated by preparative TLC (silica gel, hexane). Compound 4 a appeared to be rather unstable towards oxygen and /or moisture; when the mixture of 4 a and 5 a was exposed to the air, it gradually (over several months) deteriorated to give an intractable mixture. In contrast, compound 5 a remained unchanged under the same conditions. Therefore, we could isolate $5 \mathrm{Sa}(18 \%)$ from the product mixture by preparative TLC (silica gel, hexane $/$ benzene $=200 / 3$).

Compound 3a. IR: $1251,1114 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.00(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}), 0.22(\mathrm{~s}, 12 \mathrm{H}, \mathrm{SiMe})$, 0.54 (s, 6 H, SiMe) $\mathrm{ppm} .^{'} \mathrm{H}$ NMR: $\delta-0.08$ ($\mathrm{s}, 6 \mathrm{H}$, SiMe), 0.15 (s, $12 \mathrm{H}, \mathrm{SiMe}$), 0.54 (s. $6 \mathrm{H}, \mathrm{SiMe}$), $7.32-$ $7.37(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.50-7.56(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.78-7.84$ (m, 2 H , aromatic) ppm. ${ }^{13} \mathrm{C}$ NMR: $\delta-7.8$ (2C), -1.8 (4C), 3.7 (2C), 127.6 (2C), 127.8 (2C), 134.4 (2C), 135.3 (2C), 145.9 (2C), 146.8 (2C) ppm.
${ }^{29}$ Si NMR: $\delta-45.7,-18.4,-6.3 \mathrm{ppm}$. MS m / z (relative intensity): 384 ($M^{+}, 2$), 253 (15), 195 (4), 175 (5), 116 (100), 101 (6), 73 (35) ppm. HRMS Found: 384.1582. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Si}_{4}$ Calc.: 384.1579.

Compound 4a. H NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.27$ (s, 3 H , SiMe), 0.39 (s. 21H. SiMe) ppm. ${ }^{13}$ C NMR: $\delta-4.4$, -1.0 (2C), -0.9 (2C), 1.5 (3C), 127.4, 127.5, 128.3 (2C), 133.2 (2C), 135.5, 137.7, 142.7, 147.2, 150.0 (2C), 145.7 (2C) ppm. ${ }^{29}$ Si NMR: $\delta-42.9,-11.5$, -3.3 ppm . MS m / z (relative intensity) 384 ($M^{+}, 10$), 369 ($M^{+}-\mathrm{Me}, 1$), $325(2), 311\left(M^{+}-\mathrm{SiMe}_{3}, 41\right), 253$ (65), 191 (17), 177 (15), 116 (36), 73 ($\mathrm{SiMe}_{3}^{+}, 100$). HRMS Found: 384.1573. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Si}_{4}$ Calc.: 384.1579.

Compound 5a. IR: $1249,1122 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.37$ (s, 12H, SiMe), $0.60(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe})$ ppm . ${ }^{1} \mathrm{H}$ NMR: $\delta 0.44(\mathrm{~s}, 12 \mathrm{H}, \mathrm{SiMe}), 0.71(\mathrm{~s}, 6 \mathrm{H}$, SiMe), $7.30-7.35$ ($\mathrm{m}, 4 \mathrm{H}$, aromatic), $7.62-7.67$ ($\mathrm{m}, 4 \mathrm{H}$, aromatic) ppm. ${ }^{13} \mathrm{C}$ NMR: $\delta 0.3$ (4C), 1.9 (2C), 127.9 (2C), 128.4 (2C), 134.1 (2C), 134.3 (2C), 145.5 (2C), 145.7 (2C) ppm. ${ }^{29} \mathrm{Si}$ NMR: $\delta-21.3,-8.4 \mathrm{ppm}$. MS m / z (relative intensity): 326 ($M^{+}, 53$), 311 (2), 295 (1), 253 (100), 195 (12), 175 (11), 73 (17). HRMS Found: 326.1344. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{Si}_{3}$ Calc.: 326.1341.

Compound 6a. B.p. $115^{\circ} \mathrm{C} / 30 \mathrm{mmHg}$ (Kugelrohr). IR: $1249,1113 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta \mathbf{\delta} 0.23(\mathrm{~s}, 6 \mathrm{H}$, SiMe), 0.34 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{SiMe}$), $7.22-7.27$ (m, 2 H , aromatic), $7.54-7.58$ ($\mathrm{m}, 2 \mathrm{H}$, aromatic) ppm. ${ }^{1} \mathrm{H}$ NMR δ 0.26 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{SiMe}$), 0.32 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{SiMe}$), 7.32-7.37 (m, 2 H , aromatic), $7.57-7.62$ (m, 2 H , aromatic) $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: $\delta-8.4$ (2C), 1.8 (4C), 128.2 (2C), 133.1 (2C), 150.5 (2C) ppm. ${ }^{29}$ Si NMR: $\delta-53.6,-13.0 \mathrm{ppm}$. MS $\mathrm{m} / 2$ (relative intensity): $250\left(M^{+}, 73\right), 235$ (54), 219 (3), 191 (64), 177 (81), 161 (27), 147 (10), 145 (15), 105 (14), 93 (6), 73 (100). HRMS Found: 250,0998: $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{Si}_{3}$ Calc.: 250.1027.

References and notes

[I] E.R. Corey, J.Y. Corey and P.P. Gaspar (eds.), Silicon Chemistry, Ellis Horwood, Chichester. 1989; S. Patai and Z. Rappoport (eds.), The Chemistry of Organic Silicon Compounds, Wiley, Chichester, 1989; J.M. Ziegler and F.W.G. Fearon (eds.), Silicom-Based Polymer Science, Adv. Chem. Ser. 224, American Chemical Society, Washington, DC, 1990; Chem. Rev., 95 (5) (1995).
[2] K. Shiina, J. Organomet. Chem., 310 (1986) C57.
[3] (a) C. Eaborn, T.N. Metham and A. Pideock, J. Chem. Soce., Dalion Trans., (1975) 2212; (b) M. Tanaka, Y. Uchimaru and H.J. Lautenschlager, Organometallics, 10 (1991) 16.
[4] M. Tanaka and Y. Uchimaru, Bull. Soc: Chim. Fr., 129 (1992) 667 and references cited therein.
[5] Y. Uchimaru, Y. Tanaka and M. Tanaka, Chom. Lett., (1995i)

164; H. Yamashita, M. Tanaka and K. Honda, J. Am. Chem. Soc., 117 (1995) 8873; N.P. Reddy, H. Yamashita and M. Tanaka, J. Chem. Soc., Chem. Commun., (1995) 2263.
[6] Y. Uchimaru, M.-P.C. Arthur and M. Tanaka, presented at the 67th Annual Meeting of the Chemical Society of Japan, Tokyo, March 29-April 1, 1994, Abstr. 1H103.
[7] (a) T. Kusukawa, Y. Kabe, B. Nestler and W. Ando, Organometallics, 14 (1995) 2556; (b) A. Naka, M. Hayashi, S. Okazaki and M. Ishikawa, Organometallics, 13 (1994) 4994.
[8] In all cases, products possibly arising from redistribution were found in the reaction mixture. In runs 2-4 in particular, a relatively large amount of an isomer of $\mathbf{1 b}$ was formed, though the detailed structure was ambiguous. GPC analysis of the reaction mixture revealed polymeric materials also being formed in all cases; the yields were variant, ranging from less than 5% up to 20%, depending on the catalyst.
[9] (a) K. Tamao, T. Hayashi and M. Kumada, J. Organomet. Chem., 114 (1976) C19; (b) H. Sakurai, Y. Kamiyama and Y. Nakadaira, J. Organemet. Chem., 131 (1977) 147; (c) M. Crypyryk, J. Chrusciel, E. Fossum and K. Matyjaszewski, Macromol. Chem., Macromol. Symp., 73 (1993) 167; (d) M. Suzuki, Yuki Gosei Kagaku Kyokaishi, 51 (1993) 141.
[10] Metathesis of disilanes in the presence of a rhodium complex was reported, although yields were very low [9b].
[11] In the palladium-phosphine system catalyzed reactions of $\mathbf{1 b}$, $1-7 \%$ yields of by-products, presumably 6 b and 7 b as indicated by their molecular ion peaks, were also detected by GLC and GLC-MS analyses (Table 1, runs 1-5). Additional by-products ($2-10 \%$ yields), presumably $\mathbf{4 b}$ and $\mathbf{5 b}$ as indicated by their molecular ion peaks, were also detected in the product mixture when $\mathrm{Pd}(\mathrm{dba})_{2}$ (run 6) was used.
[12] C. Eaborn, R.W. Griffiths and A. Pidcock, J. Orgunomer. Chem., 225 (1982) 331; D. Seyferth, E.W. Goldman and J. Escudié, J. Organomet. Chem., 271 (1984) 337: M. Murakami, T. Yashida and Y. Ito, Organometullics, 13 (1994) 2900; F. Ozawa, M. Sugawara and T. Hayashi, Organometallic:, 13 (1994) 3237.
[13] M. Suginome, H. Oike and Y. Ito, Orgamometallic: 13 (1994) 4148.
[14] T. Kobayashi, T. Hayashi, H. Yamashita and M. Tanaka, Chem. Lett., (198s) 1411.
[15] S. Shimada, M. Tanaka and K. Honda, I. Am. Chem. Soc.., 117 (1995) 8289; S. Shimada and M. Tanaka, Angers. Chem., Im. Ed. Eingl., in press.
[16] All oeguinodisilanepalladium species was postulated as a key intermediate in the $\mathrm{Pd}_{\mathbf{~}}\left(\mathrm{PP}_{1}\right)_{4}$ catalyzed reactions of 1c [7b].
[17] Y. Tanaka, H. Yamashita and M. Tanaka, Organmemetullics, 14 (1995) 530.
[18] For 1.2-methyl migration, see: M.D. Curtis and P.S. Epstein, Adv. Organemet. Chem., 19 (1981) 213: K. Tamao, Y. Tarao, Y. Nakagawa, K. Nagata and Y. Ito, Organometallics, 12 (1993) 1113.
[19] H. Tobita, H. Wada, K. Ueno and H. Ogino. Organemerallics, 12 (1993) 2545.
[20] D.R. Coulson, Inerg. Synth., 13 (1972) 121.
[21] T. Ukai, H. Kawazura and Y. Ishii, J. Organemet. Chem., 65 (1974) 253.
[22] J.A. Osborn and G. Wilkinson, Inorg. Synth.. 10 (1967) 67.
[23] W. Fink. Helv. Chiun. Acta, 57 (1974) 1010.
[24] Y. Nagai, H. Matsumoto, T. Yagilhara and K. Morishita, Kogyo Kagaku Zasshi, 71 (1968) 1112.

[^0]: Corresponding author.
 ${ }^{1}$ Dedicated to Professor Robert J.P. Corriu in honor of his tremendous contributions to organosilicon chemistry.

